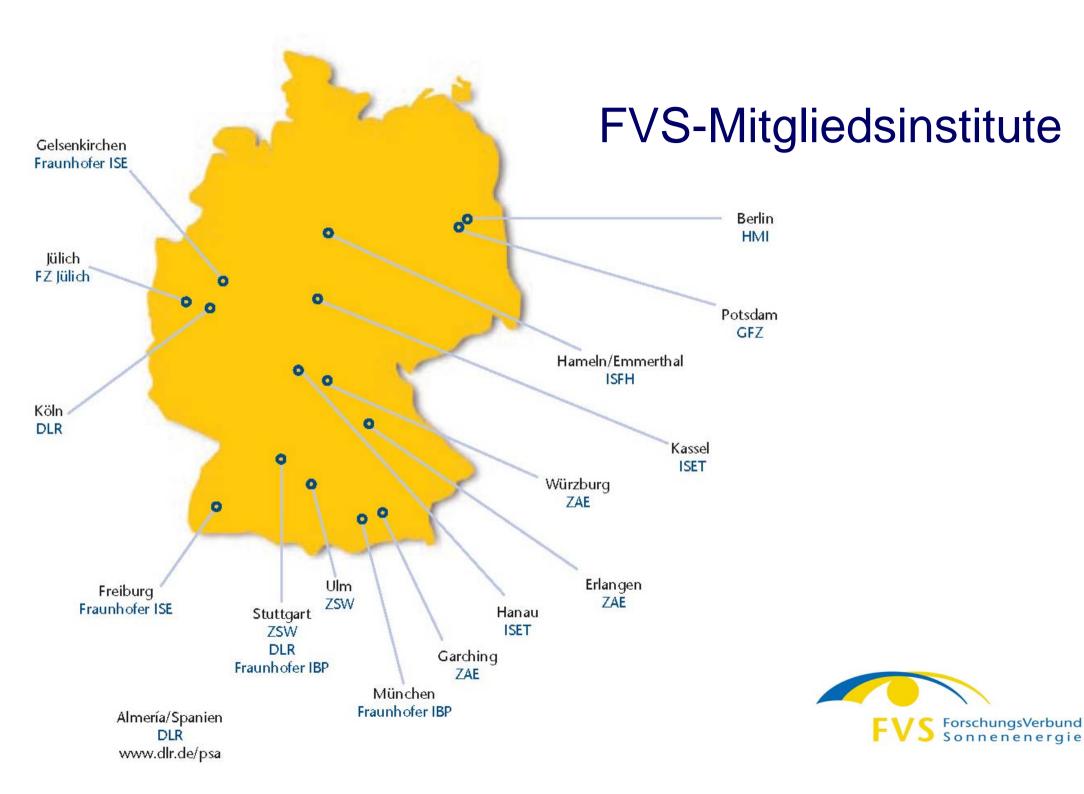
Gemeinsam forschen für die Energie der Zukunft -


Der ForschungsVerbund Sonnenengie

Dr. Gerd Stadermann – Geschäftsführer

Gliederung

- Der ForschungsVerbund Sonnenenergie
- Warum Forschung im Verbund und FuE-Themen
- Der Auftrag der Gesellschaft an die Forschung: Ziele
- Potenziale der EE
- Warum EE-Forschung?
- Instrumente der Zusammenarbeit, Struktur des FVS
- Wechselwirkung von Forschung und Public Relations
- Zusammenfassung

Forschen mit vereinten Kräften

Die FVS-Institute haben ca. 1000 Mitarbeitende.

Dies ist das größte Kompetenznetzwerk für EE in Europa.

Das FVS-Direktorium

DLR
Bernhard Milow
Programmbeauftragter
Energietechnik
Tel.: 02203/601-3655
energie@dlr.de

HMI
Prof. Dr. Michael Steiner
Wissenschaftlicher
Geschäftsführer
Tel.: 030/8062-2762
steiner@hmi.de

Fraunhofer IBP
Prof. Dr. Gerd Hauser
Institutsleiter
Tel.: 0711/970-3303
hauser@ibp.fraunhofer.de

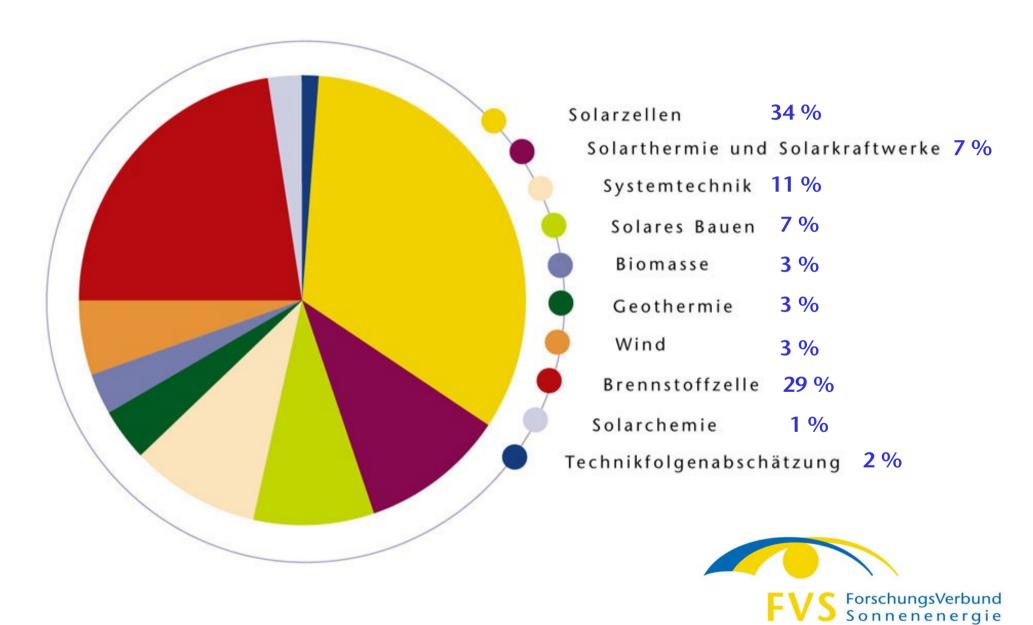
Prof. Dr. Jürgen Schmid Vorstandsvorsitzender Wissenschaftliche Leitung Tel.: 0561/7294-304 jschmid@iset.uni-kassel.de

Fraunhofer ISE Prof. Dr. Eicke R. Weber Tel.: 0761/4588-5121 eicke.weber@ise.fraunhofer.de

ISFH
Prof. Dr. Rolf Brendel
Geschäftsführer
Tel.: 05151/999-403
rolf.brendel@isfh.de

FZ Jülich Prof. Dr. Detlev Stöver Tel.: 02461/61-4010 d.stoever@fz-juelich.de

ZAE Bayern
Prof. Dr. Vladimir Dyakonov
1. stellv. Vorstandsvorsitzender
Tel.: 0931/70564-0
dyakonov@zae.uni-wuerzburg.de



GFZ Potsdam
Prof. Dr. Dr. h.c. Reinhard F. J. Hüttl
Vorstandsvorsitzender
Tel.: 0331/288-1010
huettl@gfz-potsdam.de

ZSW
Dr. Frithjof Staiß
Geschäftsführendes Vorstandsmitglied
Tel.: 0711/7870-210
frithjof.staiss@zsw-bw.de

Themen im FVS

Warum Forschung im Verbund?

- möglichst vollständiges Themenspektrum
- Steuermittel effizient nutzen
- Basis für interdisziplinäre und transdisziplinäre Forschungs- und Entwicklungsprojekte
- vernetzte Forschung mit Universitäten
- gemeinsame Kooperation mit der Industrie
- Standortpolitik: produktionsbegleitende Forschung
- gemeinsam Ziele und Visionen formulieren
- Ergebnisse in die Öffentlichkeit tragen: Akzeptanz

Zusammenarbeit im FVS

- Kommunikation
- Koordination
- Kooperation

Die Kernaufgabe des FVS

- Problemanalyse: Teilprobleme
- interdisziplinäre Arbeitsteilung
- FuE-Ergebnisse
- Gesamtlösung
- Effizientes Forschungsnetzwerk mit dezentraler Kooperationsstruktur
- ◆ Arbeitsteilung → Effizienz
- Zusammenarbeit → Synergien
- Wettbewerb → Kreativität
- Netzwerke über den FVS hinaus

Strategische Ziele des FVS

Priorität für erneuerbare Energien

- ökologisch verträglich
- ressourcensicher
- sozial gerecht
- wirtschaftlich leistungsfähig

Ziele der EU und der Bundesregierung

Bis 2010

- Minderung der CO₂-Emissionen um 23 Mio. Tonnen durch Nutzung der KWK
- Verdopplung des EE-Anteils am Primärenergieverbrauch auf 4,2%
- Erhöhung des Anteils der EE am Stromverbrauch auf 22% in der EU
- Verdopplung des EE-Anteils am Stromverbrauch auf 12,5%
- Anteil biogener Kraftstoffe der EU soll von heute 0,2% auf 5,75% erhöht werden.

Bis 2020

- 25% des Stromverbrauchs durch EE-Quellen decken
- 10% EE-Anteil am Primärenergieverbrauch in Deutschland
- Reduktion der Treibhausgasemissionen in der EU um durchschnittlich 30% gegenüber 1990
- Reduktion der Treibhausgasemissionen in Deutschland um 40% gegenüber 1990

Bis 2050

• rund 50% der Energieversorgung durch EE abdecken

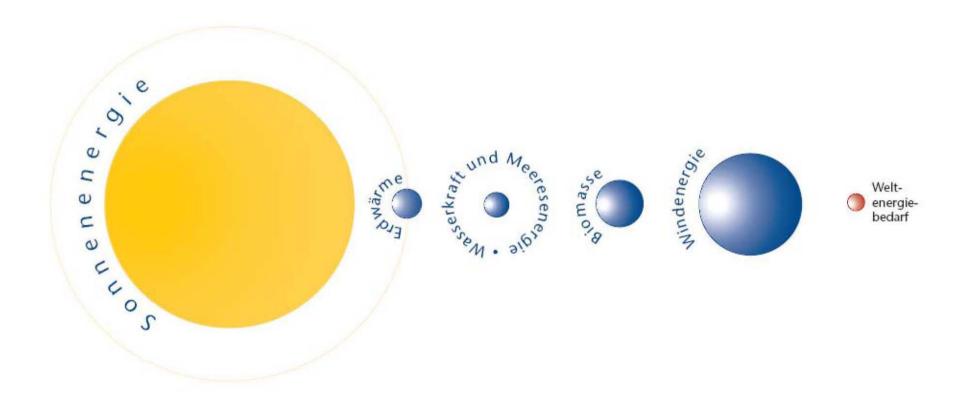
Potenziale der erneuerbaren Energien

Theoretisches Potenzial

umfasst das gesamte Energieangebot an Solarstrahlung auf dem betreffenden Gebiet in einer bestimmten Zeitspanne.

Technisches Potenzial

ist der Teil des Theoretischen Potenzials, welcher unter Berücksichtigung der tech. Randbedingungen (z.B. Fläche und Wirkungsgrad) nutzbar ist.


Wirtschaftliches Potenzial

ist der Teil der technischen Potenzials, welcher unter wirtschaftlichen Bedingungen rentabel nutzbar ist.

Volkswirtschaftliches Potenzial

ist der Teil der technischen Potenzials, welcher rentabel nutzbar ist unter Berücksichtigung volkswirtschaftlicher Kosten, wie z.B. Folgen des Klimawandels, Treibhauseffekt, sauerer Regen.

Angebot erneuerbarer Energien gegenüber Weltenergiebedarf (jeweils pro Jahr)

Warum brauchen wir Solarenergieforschung?

Erschließung bedeutet Erforschung und Entwicklung

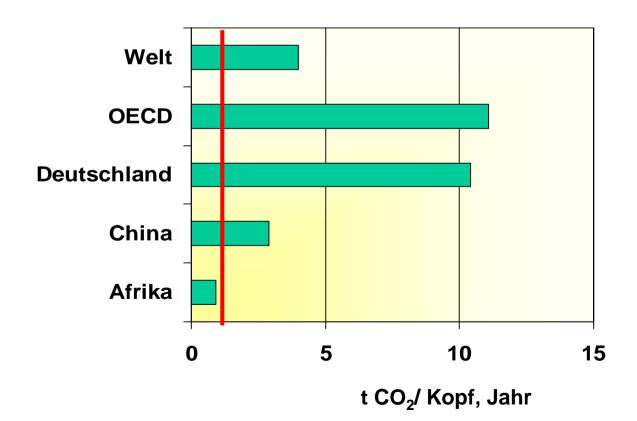

solarer und erneuerbarer Energietechniken

das technische Potenzial erhöhen

- Kosten senken Massenproduktion allein reicht nicht
- neue Konversionsmethoden erforschen und entwickeln Grundlagenforschung
- vorhandene Methoden revolutionieren
- erneuerbare Energie in Versorgungssysteme integrieren
- Techniken an Energieerzeuger und -konsumenten anpassen
- Akzeptanz der EE-Techniken

Einfluß von F&E auf die Kosten

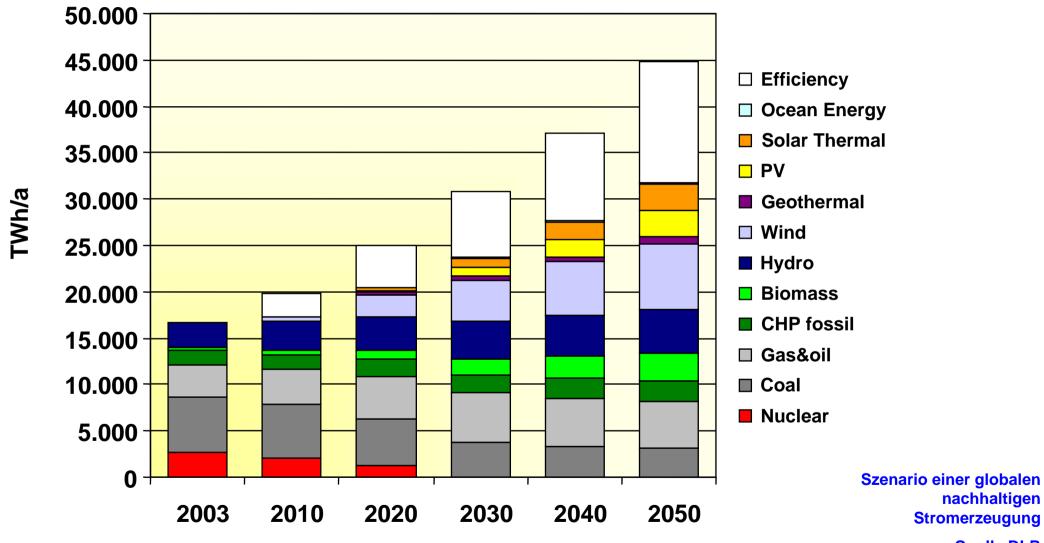
kumulierte Leistung in MWp



Heutige Energiesysteme sind nicht nachhaltig

- 9. Sitzung der UN-Kommission für Nachhaltige Entwicklung 2001: Internationaler Konsens, dass die gegenwärtigen Energiesysteme nicht nachhaltig sind.
- Weltgipfel über nachhaltige Entwicklung von Johannesburg 2002 :
 Ohne Veränderung der Energie-Situation sind die globalen Millennium-Ziele, nicht verwirklichbar.
- Dr. Irene Freudenschuss-Reichl (UN-Beauftragte Österreichs) 2006:
 Das Spannungsfeld zwischen Energiebedarf und Umweltschutz hat sich verschärft.

Ziel einer globalen nachhaltigen Energieversorgung


- Stabilisierung der CO₂-Konzentration bei 450 ppm (jetzt 430 ppm)
 - Reduktion der energiebedingten CO₂-Emissionen um 60-80 % bis 2050 (bezogen auf 1990)
 - ♦ Pro-Kopf CO₂-Emissionsrechte von ca. 1 t CO₂/a in 2050

Quelle DLR

Instrumente der Zusammenarbeit

Fördermittel

- Verbundforschungmittel (BMU, BMWi)
- Vernetzungsfonds (BMBF)
- Ressortforschung (BMELV, BMBF)
- Direktorium
- Geschäftsstelle

Geschäftsstelle

- Mitarbeiter
- Aufgaben
 - Kommunikationsknotenpunkt
 - Organisation von Veranstaltungen
 - Pressearbeit
 - Politikberatung
- Finanzierung

Netzwerk der Akteure im FVS

- DLR, FZ Jülich, Fraunhofer ISE, GFZ, HMI, ISET, ISFH, ZAE Bayern, ZSW
- Management der Institute
- Abteilungsleiter, Gruppenleiter
- Wissenschaftler, Postdocs, Doktoranden,
 Diplomanden
- Ingenieure, Techniker

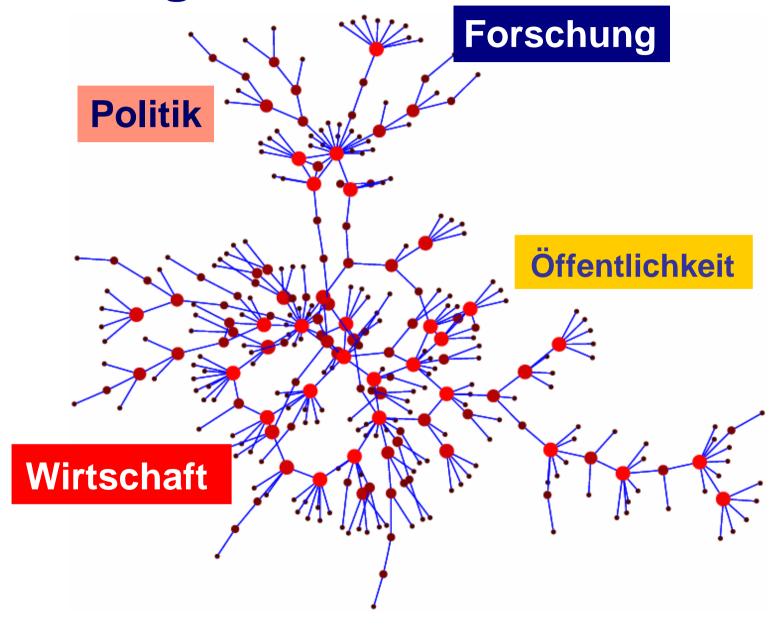
Wechselwirkung von Forschung und Public Relations

Die Wissensproduktion kann heute nicht mehr in einem "Elfenbeinturm" erfolgen, sondern ist nur in politischen, ökonomischen, ökologischen und sozialen Zusammenhängen gesellschaftlich effizient und auf Dauer finanzierbar.

Social shaped technology ist das Ziel

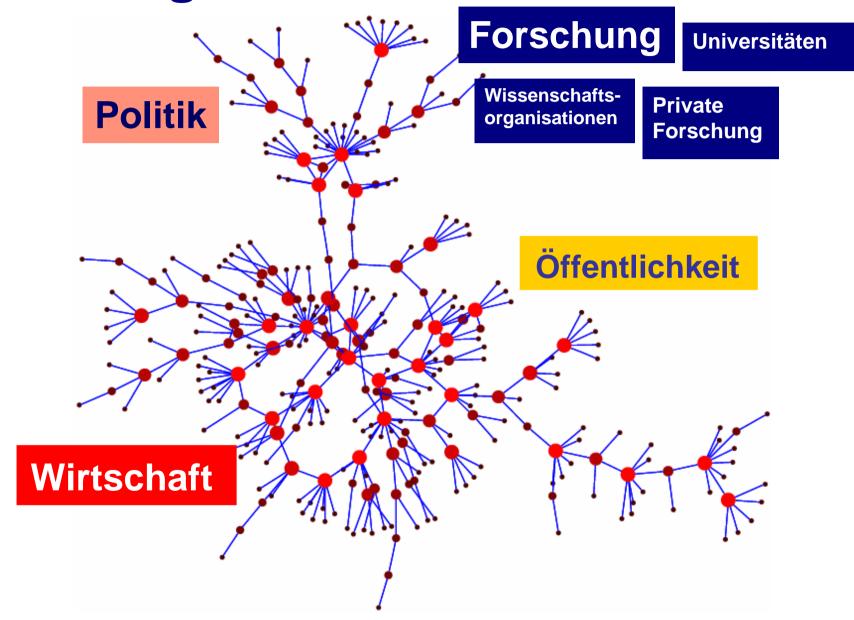
FVS als kommunikative Brücke

Gesellschaft: Umweltverbände, Kirchen, Gewerkschaften

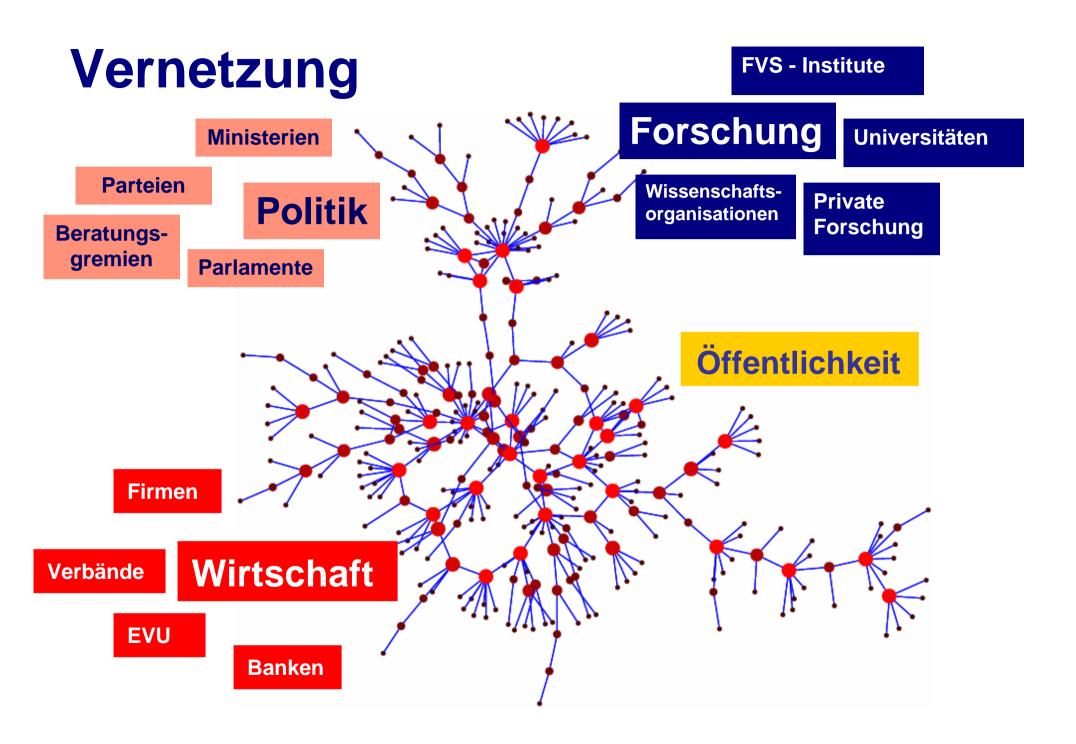

Politik: Parteien, Parlamente, Ministerien

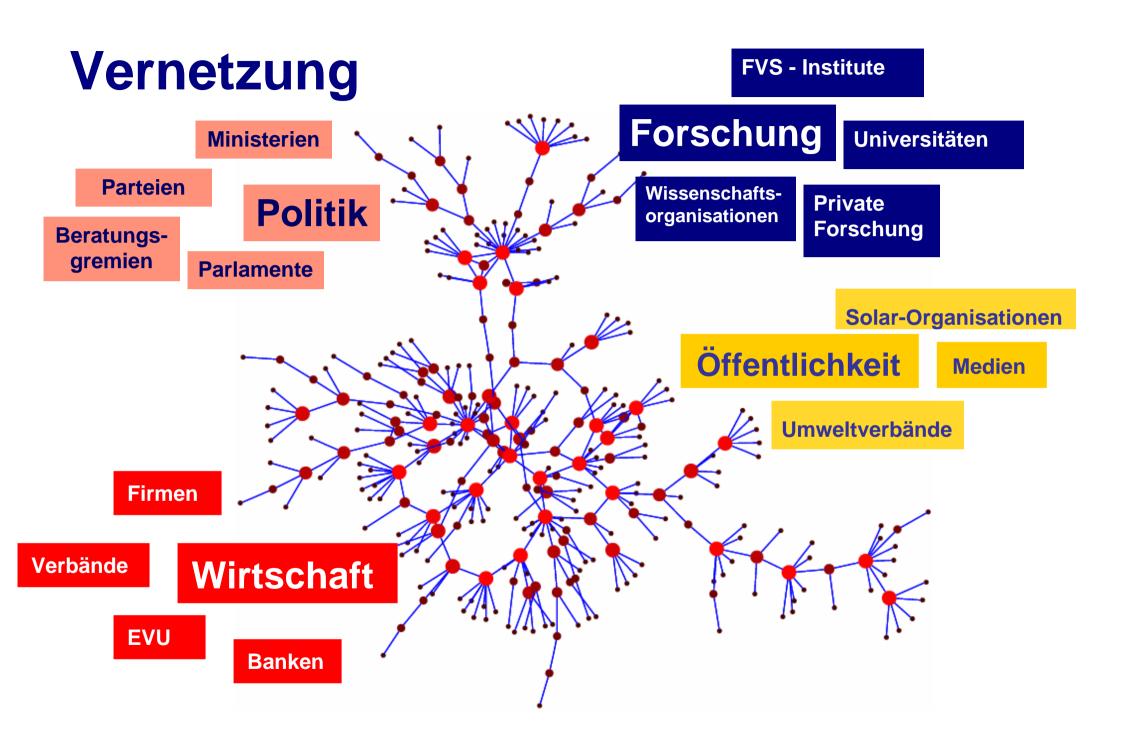
Wirtschaft: Solarfirmen, Energieversorger, Banken, Consulting

Forschung: FVS, Universitäten, private Forschung



Vernetzung




Vernetzung

FVS - Institute

Vernetzung **FVS - Institute** Forschung Universitäten **Ministerien Parteien** Wissenschafts-**Private Politik** organisationen **Forschung** Beratungsgremien **Parlamente** Öffentlichkeit **Wirtschaft**

Politikberatung

- Informationen & Argumentationshilfen
- Papiere zur Vorbereitung politischer Entscheidungen
- Mitarbeit in Gremien
- Gespräche, parlamentarische Abende, Medien, Briefe

FVS-Aktivitäten für Politikberatung

- Systemanalysen der Energietechniken
- Technikfolgenabschätzungen
- Szenarien und politische Zielsetzungen
- Forschungskonzepte f
 ür Ministerien
- Vorschläge für Förderprogramme
- Energieforschungsprogramm der Bundesregierung.

FVS - Tagungen

2006	Forschung und Innovation für eine nachhaltige Energieversorgung (Berlin)
2005	Wärme und Kälte – Energie aus Sonne und Erde (Köln)
2004	Wasserstoff und Brennstoffzellen – Energieforschung im Verbund (Berlin)
2004	Science Forum of the renewables2004 (Bonn)
2003	Photovoltaik – Neue Horizonte (Berlin)
2002	Solare Kraftwerke (Stuttgart)
2001	Integration EE in Versorgungsstrukturen (Potsdam)
2000	Sonne – Die Energie des 21. Jahrhunderts (Freiburg)
1999	Zukunftstechnologie Brennstoffzelle (Ulm)

FVS-Jahrestagung 2007

Produktionstechnologien für erneuerbare Energien

27./28. September 2007

Hameln

Info: www.FV-Sonnenenergie.de

FVS-Workshops

2006	Energiemeteorologie
2006	Systemtechnische Integration von Biomasse
2005	TCO für Dünnschichtsolarzellen III
2003	Regenerative KraftstoffePhotovoltaik (zusammen mit Uni-PV-Netz)
2002	TCO für Dünnschichtsolarzellen IIÖffentlichkeitsarbeit im FVS
2001	WasserstoffspeicherungWärmespeicherungÖffentlichkeitsarbeit im FVS
2000	TCO für Dünnschichtsolarzellen I
1998	Transparente Wärmedämmung im Industriebau

www.FV-Sonnenengie.de

ForschungsVerbünde

stellen im Bereich der erneuerbaren Energien ein besonders sinnvolles und erfolgversprechendes Instrument dar, da die existierenden Potenziale nur dann Aussicht auf internationale konkurrenzfähige Ergebnisse haben, wenn sie zu kritischer Masse gebündelt werden.

Wissenschaftsrat

